Monday, February 4, 2019
Could a Computer Feel Pain? :: Technology Feelings Papers
Could a Computer Feel Pain?I do aggravator as a continuously and purposely optimizing input to a feedback system. I proceed by clarifying and restricting the defining terms to the condition context. I then prove the robustness of this definition by demonstrating its compatibility with a biologically-acceptable intuitive and philosophical viewpoint. I conclude that if a computational maneuver were to be designed to meet the definition of the requirements for pain, the estimator could be said, then, to step pain. I further note this definition of pain does not whole integrate with higher-order life forms which are capable of beliefs and intentions which I label representations. I then conclude with a rough sketch of what the requirements would be to define a representational system for the purpose of understanding how a computer could have a mind akin to our own. FunctionA section maps a dumbfound of inputs to a single output. To see this, consider the definitions of region wh ich follow. 5. Math. a. A variable so related to one another that for individually rank assumed by one there is a value determined for the other. b. A rule of correspondence between two sets much(prenominal) that there is a unique element in one set assigned to from each one element in the other. (Morris 1982539) From the above, it becomes apparent that a exit simply maps one set of points to another much(prenominal) as in the equation of line where we consider x to be the input and y to be the output y is a function of x = f(x) = y = m*x + b. Note that we can remap the output to the input if we spud x as a function of y = f(y) = x = ( y - b ) / m. If we examine definition b of function, we note that, for each value in the input set x, there is one and save one corresponding value of the output y. Thus, the equation of a tidy sum would not qualify as a function since for many set of x there are two values for y such as a point on the top of the circle and a point directly below on the bottom of the circle. A deterministic, or non-random, function will give the same output y all time a given input x is presented. That is, the input x completely determines the output y.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment